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1.0 Application of Compressive Sensing to 2D/3D SAR

1.1 Introduction

In this chapter, we consider the problem of 2D and 3D imaging of targets from radar data obtained from 

wide-angle sparse synthetic apertures. These reconstructions are enabled by new data collection capabili-

ties, in which airborne synthetic aperture radar (SAR) systems are able to interrogate a scene, such as a city, 

persistently and over a large range of aspect angles. Additional information provided by wide-aspect 3-D 

reconstructions can be useful in applications such as automatic target recognition (ATR) and fingerprint-

ing.

We consider an airborne radar sensor which transmits sideband pulsed waveforms along a flight path and 

records the backscatter response from the scene. The returned echoes can be interpreted as 1-D line seg-

ments of the 3-D Fourier transform of the scene, and the aggregation of radar returns over the flight path 

defines a conical manifold of data in the scenes 3-D Fourier domain. These samples in the Fourier Domain 

can be projected to a 2D plane to obtain SAR Imagery. However, generating high-resolution 3-D images 

using traditional Fourier processing methods requires that radar data be collected over a densely sampled set 

of points in both azimuth and elevation angle. This method of imaging requires very large collection times 

and data storage and may be prohibitively costly in practice, since the aircraft has to make a large num-

ber of passes to sample along the elevation dimension. There is thus motivation to consider more sparsely 

sampled data collection strategies, where only a small fraction of the data required to perform traditional 

high-resolution imaging is collected. However, when Fourier imaging is applied to sparsely sampled aper-

tures, reconstruction quality suffers in either resolution or high sidelobes or both.

In this chapter, we survey several of the techniques [1–11] that have been recently proposed for 3-D recon-

struction data collected from sparsely apertures where the radar sensor collects information from few passes
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at slightly different elevation angles. These techniques rely on some basic properties of scattering physics,

and exploit signal sparsity (in the reconstruction domain) of radar scenes. Man-made target scenes are dom-

inated by a sparse number of dominant isolated scattering centers; dominant returns result from objects such

as corner or plate reflectors made from electromagnetic conductive material of different dielectric properties. 

Therefore the inversion problem can be regularized using sparsity constraints in the image domain. We will 

review both 3-D versions of Lp norm regularized least-square approaches popularized by compressive sens-

ing field as well as wide-angle extension of multibaseline interferometric synthetic aperture radar (IFSAR) 

approaches that rely on spectral-estimation methods in the height dimension.

Wide-angle imaging problems differ from traditional techniques designed for narrow angle collection ge-

ometries, where isotropic scattering assumption is well-approximated. For wide-angle scenes, radar scat-

tering is typically anisotropic over wide angles and violates the isotropic point scattering assumption of 

traditional radar imaging. Anisotropic scattering over wide angles is addressed in each case by using

non-coherent subaperture imaging, where scattering is assumed to be isotropic over narrow-angle subaper-

tures.

In the following, we first review the system model for wide-angle SAR collections and discuss shortcom-

ings of the traditional Fourier imaging methods when applied to sparse circular synthetic aperture (CSAR)

collections. Throughout the chapter, we use AFRL GOTCHA CSAR data set [12] for comparative empir-

ical results. GOTCHA CSAR data set is fully polarimetric and consists of eight complete circular passes,

with each pass being at a slightly different elevation angle. The radar used in the GOTCHA data collection

has a center frequency of 9.6 GHz and a bandwidth of 640 MHz. Next, we present a direct 3-D imaging

approach based on sparsity regularized inversion of the CSAR measurement operator with empirical results

and discuss computational complexity of the direct approach. Then, we review multi baseline IFSAR tech-

niques for this problem and consider interpolated array methods and discrete Fourier transform (DFT) peak

detection methods, and present empirical results in each case. We conclude with a discussion of practical
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Figure 1: Multipass Circular SAR Data Collection Geometry.

considerations such as data registration and autofocus for obtaining accurate reconstructions.

1.2 System Model

In this section, we present the system model for circular synthetic aperture radar (CSAR) data collections 

and briefly review traditional Fourier imaging with CSAR data. We assume that the SAR system collects

coherent backscatter measurements gi,p(fk) on circular apertures parameterized with azimuth angles {�i}

covering [0, 2⇡] and at a set of elevation angles {✓p}p=1 collected over different passes of the aircraft.

Figure 1 shows the multipass CSAR collection geometry. The radar transmits a wideband signal with

bandwidth B centered about a center frequency fc. Such a signal could be an FM chirp signal or a stepped-

frequency signal, but other wideband signals can also be used. We also assume that the transmitter is 

sufficiently far away from the scene so that wavefront curvature is negligible, and we use a plane wave 

model for reconstruction; this assumption is valid, for example, when the extent of the scene being imaged 

is much smaller than the standoff distance from the scene to the radar.

The backscatter measurements are taken at discrete set of frequencies given by the set {fk}. The imaging
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problem is to estimate the three-dimensional reflectivity function of the spotlighted scene f(x, y, z) from the

set of radar returns {gi,p(fk)} collected by the radar. The three-dimensional version of the projection-slice

theorem shows that the backscatter measurements represent samples of the 3-D spatial Fourier transform

of the reflectivity function [13]. Specifically, the 3-D Fourier transform G(kx, ky, kz) of the reflectivity

function g(x, y, z) is given by:

G(kx, ky, kz) =

Z
g(x, y, z)e�j(kxx+kyy+kzz) dr. (1)

where r = (x, y, z) is a vector of spatial coordinates. Then, the radar measurements {gi,j(fk)} correspond

to the samples ofG(kx, ky, kz) on a two-dimensional conical manifold at points (ki,p,kx , k
i,p,k
y , k

i,p,k
z ):

k
i,p,k

x =
4⇡fk
c

cos(✓p) cos(�i)

k
i,p,k

y =
4⇡fk
c

cos(✓p) sin(�i)

k
i,p,k

z =
4⇡fk
c

sin(✓p)

The inverse Fourier Transform of the data calculated on each conical manifold indexed by the elevation cut

p results in a wide-angle volumetric image Ip(x, y, z). The sum of all the volumetric images Ip(x, y, z)

results in the final coherent wide-angle volumetric image I(x, y, z):

I(x, y, z) =
X

p

Ip(x, y, z) (2)

We note that any 2-D slice from Ip(x, y, z) contains all the information from the single pass, and in particular

all 2-D slices can be regenerated from the ground plane image Ip(x, y, 0) using:

Ip(x, y, z) = F
�1
(x,y)

h
F(x,y)[Ij(x, y, 0)]e

�j

p
k2x+k2y tan(✓j)z

i
(3)

Consequently, a 2-D ground plane image Ip(x, y, 0) from each elevation ✓p is sufficient to construct the

coherent volumetric image I(x, y, z). However, the set of wide-angle images Ip(x, y, 0) is not an efficient

data representation for the radar returns, because it requires a high spatial sampling rate to prevent aliasing
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of the circular bandpass signature given by:

�x <
c

4 cos(✓)(fc + B/2)
(4)

resulting in a Nyquist sampling rate of 1 centimeter for an X-band radar. In addition, 360 degree imagery

is matched to an isotropic point scatterer that persists over the entire circular aperture. To minimize the

storage of CSAR data, while providing image products matched to scatterers with limited persistance, we

adopt image sequences {Ip,m(x, y, 0)}m where each image is the output of a filter matched to a limited-

persistence reflector over the azimuth angles in window Wm(�). Specifically, the m-th subaperture image

is constructed using

Ip,m(x, y, 0) = (5)

F
�1
(x,y)


F (kx, ky,

q
k2x + k2y tan(✓j))Wm(tan�1 kx

ky
)

�

where the azimuthal window functionWm(�) is defined as:

Wm(�) =

8
>><

>>:

W

⇣
���m

�

⌘
, ��/2 < � < �/2

0, otherwise
(6)

Here, �m is the center azimuth angle for the m-th window and � describes the hypothesized persistence

width. The window function W (·) is an invertible tapered window used for cross-range sidelobe reduction.

We also note that unlike the full 360 degree image, each image can be modulated to baseband and sampled

at a lower resolution without causing aliasing. Each baseband image IBp,m(x, y, z) is calculated as:

I
B

p,m(x, y, 0) = Ip,m(x, y, 0)e�j(k0x(m)x+k
0
y(m)y)

. (7)

where the center frequency (k0x(m), k0y(m)) is determined by the center aperture �m, mean elevation angle

✓̄ and center frequency fc.

k
0
x =

4⇡fc
c

cos(✓̄) cos(�m),

k
0
y =

4⇡fc
c

cos(✓̄) sin(�m).
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For small azimuth windows�, the Nyquist sampling rate for each image IBp,m(x, y, 0) is dictated by the radar

bandwidth and results in much smaller storage requirement for CSAR data. We note that the reduction in

sampling requirement is a result of subaperture imaging and not baseband processing. Subaperture imaging

limits the 2-D spectral extent to a patch whose size is proportional to the radar bandwidth. In contrast,

full 360� degree CSAR image occupies an annulus at Fourier domain with radius dictated by the center

frequency, necessitating much higher sampling frequency.

We note that the center frequency (k0x(m), k0y(m)) used in baseband modulation is independent of the ele-

vation angle ✓p. The use of common center frequency preserves the relative phase information between the

elevation cuts. The relative phase information between the images Ip,m(x, y, 0) corresponding passes is key

to resolving the height dimension and producing three dimensional imagery as described in sections 1.4 and

1.5.

The image sequence {IBp,m(x, y, 0)}m can be enhanced by deconvolving the subaperture point spread func-

tion [14] and can be visualized in many different ways. One possibility is to use generalized likelihood ratio

test (GLRT) imaging proposed by Moses and Potter [15]. The GLRT image IG(x, y, z) can be obtained by

taking a maximum over the sub-aperture imagery:

IG(x, y, z) = max
m

|

X

p

I
B

p,m(x, y, z)| (8)

1.3 Case Study for 3-D SAR: AFRL GOTCHA Volumetric SAR Data Set

To provide empirical results for the 3-D imaging techniques presented in this chapter, we use AFRL GOTCHA 

CSAR data set [12], which is fully polarimetric and consists of eight complete circular (360�) passes, with 

each pass being at a different elevation angle, ✓p; the radar used in the GOTCHA data collection has a center 

frequency of 9.6 GHz, giving a center wavelength of �c = 0.031, and a bandwidth of 640 MHz. Figure 2 

shows the eight passes in a global coordinate system, where the z dimension is height as measured from the
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Figure 2: Eight passes from GOTCHA CSAR collection. (Unit dimension is meter). 

ground plane in meters. This figure demonstrates the change in elevation angle across each pass.

Defining the height dimension with respect the slant plane coordinate system as zS, and height in a global 

ground plane coordinate system as zG, if data is uniformly sampled in zS, resolution ⇢ in the height dimen-

sion of the respective coordinate systems is given by

⇢S =
�c

2✓ext
m ⇢G =

�c cos(✓)

2✓ext
m, (9)

and spatial aliasing in the height dimension occurs at

AliasS =
�c

2�✓
m AliasG =

�c cos(✓)

2�✓
m, (10)

where ✓ext is the extent of the aperture in elevation angle. For the GOTCHA dataset, images formed using

all 8 ideal passes, �✓ = 0.18�, ✓ext = 1.29�, a slant plane elevation of ✓ = 45�, have resolution in the height

dimension of ⇢S = 0.69 m, and ⇢G = 0.49 m, and aliasing in the height dimension of AliasS = 4.97 m, and

AliasG = 3.51 m. We note that since the actual flight paths vary in elevation and are not uniformly sampled

in height, the point spread function of the SAR imager will not, in general, have a sinc-like structure. As

a result, sidelobes of the point spread function (PSF) function have non-negligible magnitude limiting the

resolution beyond the limits derived by the uniform sampling assumption. Figure 3 shows a traditional

volumetric SAR image of a Ford Taurus station wagon. The side of the car is parallel to the y axis, with
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the front of the car being at the most negative y value. The images show a profile of the car with the

front portion of the car sloping up to the rear domed shape section of the car. Non-linear flight path imaging

artifacts result in a point spread function with strong sidelobes in slant-plane height direction. This manifests

itself as artifacts both above and below the car, degrading image quality.

(a) Photo of Taurus station wagon (b) 3-D GLRT SAR image

.          Figure 3: Photo of a Taurus station wagon and 3-D backprojection image formed using 8 passes
of GOTCHA data.

1.4 Direct Approach to Sparsity Regularized 3-D Construction

The direct approach to 3-D imaging presented in this section is applicable to arbitrary data collection sce-

narios including the sparse collections that is of interest to urban scenarios. This approach [1, 5] assumes 

that the number of 3-D locations in which nonzero backscattering occurs is sparse in the 3-D reconstruction 

space, and applies sparse reconstruction techniques to regularize the resulting inverse problem. The recon-

struction problem is posed as an Lp regularized least-squares (LS) problem, where the regularizing term 

encourages sparse solutions. This Lp regularized least-square imaging algorithm tries to maximize to fit an 

image domain scattering model to the measured k-space data, using a regularization term that penalizes
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the number of non-zero voxels. The algorithm makes the assumption that the complex magnitude response

of each scattering center is approximately constant over the aspect angles and across the radar frequency

bandwidth. In contrast to the algorithms presented in sections 1.5.1 and 1.5.2, which apply to collections

consisting of approximately parallel apertures, the direct approach presented in this section does not make

any a priori assumptions on the collection geometry. Let C = {(xn, yn, zn)}
N

n=1 be the set of volumetricN

grid points in image reconstruction space. Typically these locations are chosen on a uniform grid to facilitate

fast computations. TheM ⇥N data measurement matrix is given by

� =
h
e
�j(kx,mxn+ky,myn+kz,mzn)

i
, (11)

where m indexes M measured k-space frequencies down rows, and n indexes the N coordinates in the

volumetric grid C across columns. Under the assumption that scattering center amplitude is constant over

the aspect angle extent and radar bandwidth considered, the measured (subaperture) data from the scattering

center model, can be written in matrix form as

y = �x+ n, (12)

where x is the N -dimensional vectorized 3-D image representing the scene in the view of the radar, The

scene x is assumed to have nonzero complex reflectivity in the j’th row if a scattering center is present at the

location (xj , yj , zj) and is zero in row j otherwise; the spatial vector xmaps to the 3-D image, I(xj , yj , zj),

through I(xj , yj , zj) = xj . Column i of � corresponds to the response of a unit amplitude scatterer placed

at location (xi, yi, zi). The noise vector n is anM dimensional i.i.d. circular complex Gaussian noise vector

with zero mean and variance �2
n, and the measurement vector y is anM -dimensional vector of noisy k-space

measurements. The reconstructed image, x, is the solution to the sparse optimization problem [16,17]

x⇤ = argmin
x

n
ky ��xk22 + �kxk

p
p

o
, (13)

where the p-norm is denoted as Lp , 0 < p  1, and � is a sparsity penalty weighting parameter. Many

algorithms exist for solving (13) or the constrained version of this problem when p = 1 (e.g. [18–21]), or in
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the more general case, when 0 < p  1 (e.g. [17, 22]). We note that the model in (1) assumes the scatterers

are anisotropic for each polarization, the image must be formed for each narrow-angle subaperture and

polarization, and then combine non-coherently using (8). Alternatively approaches for joint reconstruction

of multiple images proposed in [6] may also be applied to simultaneously reconstruct all polarizations for

each subaperture.

Figure 4: Lp regularized least-square reconstructions of a civilian vehicle from GOTCHA dataset (3-D, Side 
and Top Views, p = 1 and λ = 10).

We form 3-D reconstructions of two spotlighted areas of the CSAR GOTCHA scene centered on a Toyota 

Camry parked stationary. For the Lp regularized LS reconstructions, 5� subapertures with no overlap were 

used, for a total of 72 subaperture images that are combined by (8). Reconstructed Lp regularized LS 

image voxels are spaced at 0.1 m in all three dimensions. The dimensions of the reconstructed tophat and

Camry images in (x, y, z) dimensions are [�2, 2) ⇥ [�2, 2) ⇥ [�2, 2) and [5, 5) ⇥ [�5, 5) ⇥ [�5, 5) meters

respectively. For the results shown in Figure 4, we chose p = 1 and � = 10 experimentally to generate 

images that produce qualitatively good reconstructions. For each figure only voxels whose energy is within 

the top 40dB of image maximum is shown. To highlight vehicle structure, images are displayed using a 

smoothing interpolation with Gaussian kernel standard deviation of � = 0.1m. The apparent artifacts below 

the front of the car and to the side of the car in the 3-D view, are scattering from an adjacent vehicle that is 

not completely removed by the spotlighting process.
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1.4.1 Algorithmic and Computational Considerations

In general, sparsity regularized direct inversion of the 3-D problem require considerable memory and com-

putational resources. For our simulation results we use the iterative majorization-maximization algorithm

due to [17] to solve (13), which is applicable to the case 0 < p  1. In each iteration of the algorithm a

majorizing function J(x, x(k)) that lower-bounds the original cost function is optimized, and the sequence

of optimum solutions converges to the solution of the original optimization problem. The majorizing cost

function J(x, x(k)) is defined as:

J(x, x(k)) = ky ��xk22 + �

NX

i=1

h(xi,x
(k)
i

), (14)

where superscript (k) is the iteration number; subscript i is the component index of the vector x, and

h(xi,x
(k)
i

) = |x(k)
i

|
p + Re

n
p(x(k)

i
)⇤|x(k)

i
|
p�2(xi � xi

k
)
o
+

1

2
p|x(k)

i
|
p�2

|xi � x(k)
i

|
2
. (15)

It was shown in [17] that the sequence of solutions

xk+1 = argmin J(x,x(k)) (16)

=


�H�+

�

2
D(x(k))

��1

�Hy, (17)

where D(x(k)) = diag{p|x(k)
i

|
p�2

}, converges to the solution to of the Lp regularized LS problem. For the

image reconstruction problems considered here, conjugate gradient (CG) algorithm [16] provides a compu-

tationally efficient method to perform the matrix inversion in (17). This results in an algorithm with two

nested loops: The outer loop iterates on the solution x(k), and the inner loop is the CG loop that computes

the matrix inversion. Proper termination criteria for both loops have to be implemented to achieve to a

proper solution. Typically, the outer loop is terminated when the relative change in the original objective

function is small between iterations, and we the inner CG loop is terminated, when the relative magnitude

of the residual becomes small.
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In practice, the inner loop terminates after very few iterations for a Fourier operator, as the case in here. In

our experience, this type of algorithm terminates faster than a split Bregman iteration approach [21] for the

imaging problems considered here. Let�x,�y,�z be the voxel spacings in the uniform rectilinear grid C.

Then, the coordinates in the C consist of all permutations of (x, y, z) coordinates from the partitioned axes;

and the set C defines a uniform 3-D grid on the scene. If, in addition, we assume that the k-space samples

lie on a uniform 3-D frequency grid centered at the origin, the operation �x can be implemented using the

computationally efficient 3-D Fast Fourier Transform (FFT) operation. In many scenarios, including the

one here, the measured k-space samples are not on a uniform grid, and therefore the FFT cannot be used

directly. A potential solution would be to first interpolate the k-space samples and then apply the standard

FFT operation to the interpolated samples. A computationally efficient, alternative approach is to use Type-2

nonuniform FFTs (NUFFT)s as the operator � to process data directly on the non-uniform k-space grid, as

given in [23,24]. The implementation of nonuniform FFT algorithms require an interpolation step executed

for each evaluation of�; whereas, in interpolate then FFT approach, the interpolation occurs only once. As

a result for an iterative algorithm where repeated evaluation of the � is required, the latter approach might

be preferred. For apertures proportional to the bandwidth resulting in square-pixels, simple nearest neighbor

interpolation provides is sufficient.

For an iterative algorithm, like the one utilized here, only the data vector y as well as the current iterate

of x and a gradient with the same dimension as x needs to be stored. For example, to reconstruct a scene

of size of a single vehicle, N = 2563 ⇡ 1.7 · 107 are required. Therefore, for reconstructing of a vehicle,

a minimum of three vectors of size 1.7 · 107 should be stored at double precision with complex valued

variables. For algorithms that utilize a conjugate gradient approach for matrix inversion it is necessary to

store a conjugate vector of dimension N as well. Whereas in a Newton-Raphson approach, it is necessary

to store a Hessian of dimension N ⇥ N . During each iteration of the recovery algorithm, the operator �

and its adjoint has to be computed. These operations can become very computationally expensive when the
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problem size grows and may result in a computationally intractable algorithm, unless a fast operator such

as the FFT is employed. Specifically, since � is an M ⇥ N matrix, direct multiplication of �x requires

MN multiplies and additions per evaluation. For the examples considered in this section, the average value

of these M values is 105, requiring MN ⇡ 1012 operations. In contrast after an initial interpolation step,

an FFT implementation of �x requires O(D3 log(D3)) operations, where D is the maximum number of

samples across the image dimensions. For the imaging example, with D = 256, FFT implementation

results in computational savings on the order of 103.

1.5 Multiple Elevation IFSAR

In this section, we consider a parametric method for high resolution 3-D reconstruction for multipass circular

SAR. Multibaseline generalizations of IFSAR have been considered for linear collection geometries in [25,

26], here we consider parametric spectral estimation techniques for 3-D target reconstruction in circular

SAR systems.

The input to the multipass IFSAR algorithm is a set of baseband modulated ground plane images {IBp,m(x, y, 0)}p

at a given subaperture centered �m of data collected at elevation pass ✓p. For notational simplicity we

drop common indices and denote the image sequence as {Ip(x, y)} and consider without loss of generality

�m = 0. We consider a finite number of scattering centers at each resolution cell (x, y) and reparametrize

the scene reflectivity g(x, y, z) as:

gq(x, y) = g(x, y, hq(x, y)) (18)

where gq(x, y) denotes the reflectivity of the q’th scattering center at location (x, y, hq(x, y)). In general the

number of scatterers per resolution cell varies spatially and needs to be estimated from the data. Then, the

ground plane image for elevation ✓i can can be written as:

Ip(xl, yl) = s(x, y) ?

Q(xl,yl)X

q=1

g(x, y)e�j tan(✓j)k0yhq(x,y)e
�jyk

0
y (19)

STO-EN-SET-257 04-Part-I - 15

z

Application of Compressive Sensing to 2D/3D SAR



where s(x, y) is the inverse Fourier transform of the 2-D windowing function used in imaging, k0y =

(4⇡f/c) cos(✓̄) is the center frequency used in baseband modulation and Q(xl, yl) is the number of scatter-

ers in the resolution cell (xl, yl). The ground locations (x, y, hq(x, y)) and the image coordinates (xl, yl)

are related through layover :

xl = x yl = y + tan(✓p)hq(x, y). (20)

We assume that the difference between the elevation angles for the different passes is small enough so

that for each elevation pass the scattering center (x, y, hq(x, y)), falls to the same resolution cell (xl, yl).

Without loss of generality we consider P + 1 circular passes at elevation angles ✓p = ✓̄ + p�✓ for p =

�P/2, . . . , P/2. Then the baseband images from each pass can be modeled as:

Ip(xl, yl) =

Q(xl,yl)X

q=1

g̃q(xl, yl)e
�jk

0
y tan(✓p)hq(xl,yl) (21)

using the approximation

tan(✓p) ⇡ tan(✓̄) +
1

cos2(✓̄)
p�✓, (22)

we obtain the sum of complex exponential model:

Ip(xl, yl) =

Q(xl,yl)X

q=1

g̃q(xl, yl)e
�jkq(xl,yl)p (23)

where the complex constant e�j tan(✓̄)k0yhp(xl,yl) is absorbed into the reflectivity g̃q(xl, yl) and the frequency

factor kq is given by:

kq(xl, yl) =
4⇡f

c cos(✓̄)
�(✓)hq(xl, yl) (24)

The frequency estimates k̂q are then transformed into height estimates ĥq using:

ĥq = k̂q
c cos(✓̄)

4⇡fc�(✓)
. (25)

Each estimated scattering location (xl, yl, hp(xl, yl)) is then mapped to image coordinates by inverting the

equation (20) at the mean elevation angle ✓̄:

x = xl y = yl � tan(✓̄)hq(xl, yl). (26)
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Figure 5: Variation in elevation angle over a 10◦ azimuth window. “Reproduced with permission from IET
Radar, Sonar and Navigation, 4(3),2010. c IET 2010. ”

Estimation of parameters of complex exponentials in noise is a fundamental problem in spectral estimation 

and array signal processing [27]. If the number of distinct complex exponentials is known, several high 

resolution methods can be used to estimate the frequencies. Model order selection for sum of complex 

exponential model have been studied widely in literature [28, 29].

In general, the elevation spacing of the CSAR flight paths are not equispaced. As an example, for the 

GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL) [12] 

features eight complete circular passes collected at nominal 45 degree elevation angle. Each pass has a 

planned (ideal) separation of �✓ = 0.18� in elevation. Actual flight paths differ from the planned paths, 

with elevation samples at 44.27�, 44.18�, 44.1�, 44.01�, 43.92�, 43.53�, 43.01�, 43.06� degrees. In addition 

in each pass the elevation varied as the aircraft circled the scene. Figure 5 shows the variation in elevation 

angle over 10� azimuth window.

The harmonic retrieval problem of multiple complex exponential terms from a short, nonuniformly-sampled



data set is nontrivial; common techniques such as MUSIC do not readily apply since there is only one 

snapshot from which to form a covariance matrix estimate.

In the next subsections 1.5.1 and 1.5.2, we review two methods of spectral estimation that are applicable 

to CSAR collections with approximately parallel flight paths. The first technique is based on interpolation 

of the CSAR data to a uniformly spaced vertical grid using sparsity regularized least-square techniques 

and then use traditional spectral estimation methods such as ESPRIT [30] to the resulting oversampled 

covariance matrix. The second technique is based on the observation that majority of the pixels contain only 

a single scattering center in the height dimension. This single scatterer per resolution voxel approximation 

to the system model enables computationally efficient maximum-likelihood estimation using non-uniform 

discrete Fourier transform of the data.

1.5.1 Sparsity regularized interpolation approach to m-IFSAR

One approach to solve the spectral estimation problem from non-uniformly sampled data is to first interpo-

late to uniform grid and then apply classical technical techniques that rely on uniformly spaced samples. In 

particular, algorithms known as “interpolated array methods” estimate the output of a uniform virtual array 

by interpolating the outputs of the actual array [31,32]. The simplest method of interpolation is to use linear 

interpolation to a regular grid. As we will see in the simulation example, simple linear interpolation leads 

to degraded performance. Here, we outline a new interpolated array method based on sparsity regularized 

reconstruction of single pulse image I�(r, h) obtained by coherently processing returns for multiple eleva-

tions {✓p} at a single azimuth angle �. The range (r) and height (h) are measured with respect to slant plane

coordinates.

The relationship between the single pulse image I�(r, h) and the projection of the scene reflectivity function
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(a) (b)

(c) (d)

(e)

Figure 6: Single Pulse Image from eight nonuniform spaced elevation passes (a) original (b) sparsity regu-
larized enhancement and the corresponding phase histories (c) original (d) linearly interpolated (e) sparsity 
regularized interpolation for λ = 0.1 and p = 1.0.
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g�(r, h) on the azimuth plane � is given by:

I�(r, h) = ��g�(r, h) + n(r, h), (27)

where �� is the convolution matrix of the system point spread function corresponding to the elevation

spacing at azimuth angle � and n(r, h) represents noise and modeling errors. The deconvolution problem

aims to reconstruct the scene reflectivity function g�(r, h) from the measured single puls image I�(r, h),

given the knowledge of the convolution kernel��. The convolution kernel�� acts like a low-pass filter and

does not have a bounded inverse, therefore in the absence of any constraints on g�(r, h), the deconvolution

problem is ill-posed [33]. Here, we again consider the majorization-maximization method reviewed in

section 1.4 , which enforces sparsity in the reconstruction process. Specifically, we obtain an enhanced

single pulse image through minimization of :

ĝ�(r, h) = argmin
g

�
kI� ���gk

2
2 + �kgkp (28)

The first term in the minimization captures the consistency of the reconstructions with the observed data

through equation (27); the second term in the minimization, favors sparse solutions for g for p  1. The

real valued scalar parameter � controls the relative weight of the two factors and is determined based on

the expected signal to clutter ratio [14]. The unconstrained optimization problem in (28) can be efficiently 

solved using an iterative pseudo-Newton method introduced in [16] and results in the location and amplitude

of major scattering centers in the subaperture image. We note that a wide variety of methods have been 

proposed for the solution of (28) in the literature [34, 35].

Fourier inversion of the enhanced image ĝ�(r, h) results in phase histories from a virtual array with equal 

spacing. Once interpolated histories are found, the sum of complex exponential model given in (23) is 

applicable and therefore spectral estimation methods can be employed to detect and resolve scatterers in the 

height dimension at each pixel (xl, yl) in the slant-plane. Here, we employ a simple model order selection

method based on thresholding the eigenvalues of the sample covariance matrix for the vector {Ip(xl, yl)}p to
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estimate the model orderQ(xl, yl). Using this model order we then use the ESPRIT [30] method to estimate

the frequencies kq(xl, yl) from the signal eigenvectors of the sample covariance matrix.

In the following, we illustrate sparsity regularized interpolated array method to multipass circular SAR data

using the AFRL GOTCHA CSAR data set. Here we divided the data on 36 non-overlapping windows of

width � = 10� centered at �m 2 {0�, 10�, . . . , 350�} and used the entire 640 MHz bandwidth centered

at 9.6 GHz for the single VV polarization. For each subaperture window, we created a virtual array of 32

uniformly sampled passes covering the same elevation range achieved by the SAR sensor in that subaperture.

Using the sparsity regularized interpolation method, we interpolated the phase history data collected at

nonlinear flight paths to the data collected at virtual array geometry. In constructing the single pulse images

we used the prior knowledge about the target dimensions to restrict the height and range support of the single

pulse image to 5 meters. For each of the virtual 32 passes and for each of the subapertures ground plane

images are constructed using classic backprojection. Next, we applied ESPRIT based parametric spectral

estimation method to all pixels whose amplitude is within the 20dB of image maximum, to construct three

dimensional points representing observed strong scattering mechanisms. The 3-D point clouds from each

subaperture window is rotated and overlayed to a common reference frame.

Figure 7 shows the resulting reconstruction overlayed with the CADmodel of the station wagon. We observe

that point cloud encompasses the CAD model and strong returns from the ground plane-side panel (double

bounce mechanism) and the curved surfaces (single bounce mechanism) are clearly visible. We note that

the car was parked on smooth asphalt surface with no close by cars or buildings that would have introduced

multipath reflections.
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(a) 3-D perspective (b) Top view

(c) Side view (d) Front view

Figure 7: Three dimensional reconstruction of a Taurus Station Wagon using multipass Circular SAR data.

1.5.2 DFT peak detection approach for m-IFSAR

For many vehicles the horizontal imaging geometry ensures that only few scatterers are present in each 

image pixel (xl, yl). Specifically, in a recent study using CSAR simulated X-band data of vehicles [3], the 

estimated model order was Q = 1 in a large majority of cases. Thus, the complex exponential signal model 

considered in (23) is sparse, with typically only 1 scattering center in the height dimension. This presents 

a computational advantage, because for the single-exponential case, a maximum likelihood estimator of its 

frequency in white measurement noise is given by the peak of the Fourier transform of the data, and this 

Fourier transform is easy to compute even in the case of non-uniform samples. We can thus estimate, for
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each pixel (xl, yl) the location kp(xl, yl), as the peak of the Fourier transform of the non uniformly sampled

values for that pixel and calculate the height using (26). The complex amplitude of the Fourier transform at

the peak provides an estimate of the amplitude of the scattering center.

We note that using this multi-pass IFSAR approach, the original 3-D problem has been converted to a set of

2-D and 1-D processing steps. First, 2-D images are formed for each azimuth subaperture and each elevation

angle. Then, 1-D processing is applied to each P ⇥ 1 vector obtained by stacking the set of P elevation

images and selecting the P values at a pixel location of interest. The processing reduction is afforded by the

particular structure of the sparse measurement geometry provided by CSAR collections.

In general for the multi-pass IFSAR approach, reconstructed scattering centers are not constrained to lay

on a grid in the height dimension. To have a volumetric image defined on a uniform grid, data should be

first interpolated to a grid with uniform voxel spacing in each dimension. Empirically we have found that a

Gaussian kernel with standard deviation of grid-spacing provides visually appealing results when used for

interpolation.

Figure 8 shows the results of the multi-pass IFSAR approach applied to the CSAR GOTCHA data for

Toyota Camry, previously used to illustrate the performance of direct sparsity regularized approach shown in

Figure 4. The top 20 dB points are shown. The results are shown for VV polarization. Scattering is assumed

to be above the ground plane in calculations; so, unlike in the Lp regularized LS reconstruction, there are

no non-zero voxels below the vehicle. As in the Lp regularized LS reconstruction, a set of 72 subaperture

image sets were formed, each with 5� azimuth extent, and the image-domain subaperture reconstructions

were combined using (8).

The multi-pass IFSAR reconstructions appear to be more filled than the Lp regularized LS reconstructions.

This is due to relatively lower downrange and crossrange resolution of the Fourier imaging techniques

employed. The detriment of spatial spread is application specific. For visualization, this spreading may
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⇡

4

Figure 8: Wide angle multi-pass IFSAR reconstructions of a civilian vehicle from GOTCHA dataset (3-D, Side and 
Top Views).

be desirable, favoring the multi-pass IFSAR reconstructions. In other applications, such as ATR, fine 3-D 

resolution features may be desirable, and Lp regularized LS reconstructions may be superior.

1.6 Practical Considerations: Autofocus and Registration

In this chapter, we have reviewed several methods for 3-D target reconstruction using sparsity assumption 

on the target support. All these methods can provide high-resolution volumetric imagery from multipass 

circular SAR collections, provided that data from the multiple passes are properly registered and phase 

coherent. While many system errors have decreased with improved collection platform reference systems 

and more accurate clocks, remaining system errors still degrade imagery. Many system errors, such as 

platform position errors, manifest as phase errors, be it pulse to pulse or pass to pass. An oscillator scale 

factor error may induce different spatial translations of 2-D imagery. Amplifier thermal effects or aspect 

dependent antenna gain may adversely effect gain across passes. The strong requirement for phase 

coherence in SAR dictates these errors be very small. For instance, Jakowatz [36] suggests no more than 

radians of phase error, equivalently small relative range error, be tolerated for acceptable autofocus of pulse-

to-pulse errors. Autofocus aims to estimate these errors from the radar data and compensate them. While
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several effective methods exist for within pass collections, such as Phase Gradient Autofocus [36], other

methods are needed for 3-D autofocus in situations when wide-aspect persistent scatterers are not available

for prominent point autofocus [37]. Recently, interpass 3-D autofocus methods have been proposed [38–40].

These autofocus methods can be formulated as a set of linear filters in the spatial frequency domain for each

p’th pass,

Hp(kx, ky) = e
cp+j✓l+j2⇡(xpkx+ypky), (29)

where cp is a constant gain term, ✓l is a constant phase term, and (xl, yl) is a linear phase term in the

frequency domain or equivalently a (xl, yl) translation in the image domain in accordance with the Fourier

shift theorem. The image domain filter is expressed as hl(x, y) = F
�1

{Hl(kx, ky)}. The application of the

registration filters can be performed in spatial domain as:

Īp(x, y;⇥) = Ip(x, y) ⇤ hj(x, y,⇥) (30)

The autofocus problem may be posed as a joint optimization problem. Considering P elevation passes, the

registration filter of equation (29) specifies a parameter vector of

⇥ =


c1 . . . cP�1 ✓1 . . . ✓P�1 (x, y)1 . . . (x, y)P�1

�T
, (31)

where the registration parameters for one of the P passes is held constant or fixed to some ground calibration

feature to avoid ambiguity. The autofocus problem is to find ⇥⇤ that jointly minimizes some appropriate

objective function C({Īp(x, y,⇥)}) that evaluates coherency of the multi pass data:

⇥⇤ = argmin
⇥

C({Īp(x, y,⇥)}). (32)

Interpass 3-D autofocus methods in the literature [38–40] differ in their optimization criteria. Kragh [39]

considers Rényi entropy over the normalized voxel energy of the volumetric images as the optimization

metric for 3-D autofocus.

S↵(g) =
1

1� ↵
log

NX

n=1

q
↵

n , (33)
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where ↵ > 0 is the entropy order parameter. To compute entropy over a volumetric image, let g =

(g1, . . . , gN ) be a vector of image samples from Ī(x, y, z;⇥) obtained from focused ground plane imagery

using (2), and let qn = |gn|
2
/
P

n
|gn|

2 be the normalized voxel energy. Evaluating the Rényi entropy for

↵ = 2 gives the quadratic entropy criterion of the image used for autofocus:

C(Īp(x, y;⇥)) = 2 log
NX

n=1

|gn|
4 + 2 log

NX

n=1

|gn|
2

. (34)

Elkin [38] considers the least-squares (LS) optimization criteria as sum over the image, using the model

order assumption of one for the height dimension to obtain a single scatterer at height z⇤(x, y) per image

pixel (x, y).

C({Īp(x, y;⇥)}) =
X

x,y

X

p

|Ip ⇤ hp(x, y,⇥)|2 �
1

P

�����
X

p

(Ip ⇤ hp(⇥))(x,y)e
�jk

0
y tan(✓p)z⇤(x,y)

�����

2

. (35)

Boss [40] proposed a 3-D autofocus method based on maximizing coherence factor computed over the

dominant scatterers in an image scene given by:

C({Īp(x, y;⇥)} =
X

x,y

���
P

p
(Ip ⇤ hp(⇥))(x,y)e

�jk
0
y tan(✓p)z⇤(x,y)

���
2

P
P

p
|Ip ⇤ hp(x, y,⇥)|2

(36)

We note that for a typical registration problem the total energy of the registered images is constant therefore

the least square criterion simplifies to:

⇥⇤ = argmax
⇥

X

x,y

�����
X

p

(Ip ⇤ hp(⇥))(x,y)e
�jk

0
y tan(✓p)z⇤(x,y)

�����

2

. (37)

which is equivalent to maximizing the DFT amplitudes of the registered images (or equivalently summing

up the numerator of the Coherence Factor). As a result LS registration emphasizes coherence of higher am-

plitude pixels which could be preferable in certain applications, whereas Coherence Factor metric provides

the flexibility to target a set of pixels (for example pixels on target), maximizing coherence across those

pixels with equal weight.
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